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A  DIFFERENTIAL  CORRECTION TECHNIQUE FOR DETERMINING 

PHYSICAL PROPERTIES  OF  THE MARTIAN ATMOSPHERE BY USE O F  

SOLAR OCCULTATION AS SEEN  FROM AN ARTIFICIAL  SATELLITE 

By James  R. Williams  and H. Andrew  Wallio 
Langley  Research  Center 

SUMMARY 

A satellite i n  a circular  orbit   about  Mars is assumed  to  be  equipped  with  instru- 
mentation  capable of observing  the  diminution of sunlight  passing  through  the  atmosphere 
at grazing  incidence  to  the  Martian  surface. A differential  correction  technique  utilizing 
a least-squares  method of data  fitting  has  been  used  in  conjunction  with a model of the 
Martian  atmosphere  to  determine  the  surface  pressure,  surface  temperature,  and  tem- 
perature  gradient.  In  the  visible  spectrum a wavelength of 5500 A (1 A = 10-10  m) pro- 
duces  the  quickest  convergence  for  the  widest  range of varied  initial  conditions of the 
three  parameters  under  consideration. 

INTRODUCTION 

Before a scientific  payload  can  be  soft-landed on Mars  at precise  locations, a 
better  knowledge of the  physical  properties of the  Martian  atmosphere is required.  One 
technique  which  could  serve as an  independent  method  in  determining  such  atmospheric 
properties as pressure  scale  height, surface  pressure,   surface  temperature,   and  tem- 
perature  lapse rate (defined as the  negative of the  temperature  gradient) is outlined  in 
reference 1. This  technique  utilizes a photometer  aboard  an artificial satellite to  mea- 
sure  the  variation  in  light  intensity  from  the sun as the  light  passes at grazing  incidence 
through  the  Martian  atmosphere. 

Reference 1 demonstrates  that  the  occultation  technique  allows  ready  discernment 
of differences  in  the  curves of light  intensity  variation  for  various  models of the  atmo- 
sphere.  The  present  paper  investigates  the  problem of extracting  the  atmospheric  prop- 
erties of surface  pressure,   surface  temperature,   and  temperature  lapse rate if a mea- 
sured curve of the  light  intensity  variation is given.  The  purpose of this study is to 
determine  whether a first-order  differential  correction  technique is adequate  to  deter- 
mine  these  physical  properties of the  Martian  atmosphere. 



In  order  to  accomplish this a Taylor  expansion of the  equation of light  intensity 
variation is truncated after the  first-degree  terms,  and a least-squares fit is made  to 
the data on the basis of an initial estimate,  to  determine  the  increments for the  atmo- 
spheric  properties  that  are to be used as the  input  conditions  for  the  second  iteration. 
This   process  is repeated  until  convergence criteria are met. 

As in   reference 1, the  factors which  determine  the  mathematical  model  for  the 
light  intensity  variation are hydrostatic  equilibrium  in  the  atmosphere,  refraction  through 
the  atmosphere,  limb  darkening  and  finite  size of the  sun,  and  Rayleigh  scattering  in  the 
atmosphere. A model  using  these  factors  appears  to  be  adequate  since  recent  findings 
of Mariners VI and VI1 (ref. 2) indicate  that  clouds  and  fog  are  not  prominent  in  the 
Martian  atmosphere,  and  therefore  multiple  and  Mie  scattering  can  be  neglected. 

The  technique  presented  in  this  paper  can  be  used as a method  to  determine  sur- 
face  pressure  and  temperature,   pressure scale height,  and  temperature  lapse rate in  the 
atmosphere.  The  advantage of using  this  occultation  data is that  with  an  attitude  control 
system  and  cruise  orientation  similar  to  that  used  on  the  Lunar  Orbiter  and  Mariner 
spacecraft,  one  spacecraft axis would be  nominally  pointed  toward  the  sun,  and a prop- 
e r ly  mounted solar   sensor  would require no  additional  attitude  control. 

SYMBOLS 

A 

D 

E 

h 

matrix of par t ia ls  

distance  from  satellite  to  planet, 8700 km 

e r r o r  

acceleration due to  gravity, 3.7 m/sec2 

pressure   sca le  height,  TR/mg,  km 

intensity of sunlight  passing  through  Martian  atmosphere 

intensity of sunlight  in  free  space 

rat io  of I(x) to Io 

value of I, at  ith  point 
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Z(Y) 

m 

P 

R 

r 

T 

V 

X 

Y 

Z 

Zmax 

a! 

P 

r 

x 

w 

factor  determining  limb  darkening and finite sun size 

average   mass  of gas,  kg/mol 

surface  pressure,   mb 

universal  gas  constant 

radius of Mars,  km 

surface  temperature, K 

variable  limit of integration 

coordinate of satellite trajectory,  km 

dummy  variable of integration 

altitude  above  Martian  surface,  km 

maximum  value of z 

half-angle  subtended by sun as seen  from satellite, radians 

Rayleigh  scattering  coefficient,  km-l 

temperature  gradient  parameter,   km-l 

wavelength, A (1 A = 10-10  m) 

deviation of light  ray  from  straight  line at Martia .n surface,  radians 

Pr imed  parameters  are estimated  values.  Parameters  prefixed  with A represent  
the  difference  between data and  estimate. 

ASSUMPTIONS AND  ANALYSIS 

In this paper  the  major effects on  the  variation of the  light  intensity are differential 
refraction  through  the  Martian  atmosphere,  limb  darkening of the  sun,  and  Rayleigh 
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scattering  due  to  the  gas  molecules  in  the  atmosphere.  The  mathematical  model of these 
effects is derived  in  reference 1. Mie scattering  and  multiple  scattering  due  to  clouds 
o r  fog are neglected (see ref. 2). 

Differential  refraction is the  divergence of two infinitesimally  separated  parallel 
rays  which  traverse  an  atmosphere  whose  index of refraction is a function of altitude. 

Limb  darkening of the sun occurs  because  the  light  which  reaches  the  satellite is 
the  sum of rays  from  the  various  parts of the  disk of the sun, each  ray  passing  through a 
different  layer of the  Martian  atmosphere.  The  effect is a spreading of the  curve of 
light  intensity  variation  and a smoothing of the  discontinuities  due  to  the  fine  structure 
of the  atmosphere.  Implicit  in  limb  darkening effects is the  consideration of the  finite 
size of the  sun. 

Rayleigh  scattering is the  scattering of light by the  gas  molecules  in  the  atmosphere, 
where  the  wavelength of the  incident  radiation is long  in  comparison  to  the  dimensions of 
the  molecule.  The  scattering is dependent on the  fourth  power of the  wavelength  and  the 
number  and  type of gas  molecules  in  the  atmosphere. 

Thus,  for  reference 1, the  ratio of the  light  intensity of the  sun  received  through 
the  atmosphere  to  the  light  intensity of the  sun  in free space is given by combining  the 
effects of refraction,  limb  darkening,  and  Rayleigh  scattering as follows: 

with  the  auxiliary  equation 

and  the  variable  limits of integration  given by 
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For brevity of notation,  the  following  definition is introduced: 

The  functions I?, p, and  T are the unknown physical  parameters that characterize  the 
Martian  atmosphere.  The  technique  used  in  this  paper  to  solve for these  parameters  
consists of assuming a light  curve  which  approximates  the  observed  light  curve  and for 
which  the  parameters I?', p',  and T' are known. (Pr imed  parameters  are estimated 
values.) Now from Taylor's  theorem, 

aIxv aIx' aIx' 
a r' aP aT 

l#,p,T) = a' (r',p',T') +-(I- - r') + "--7-(p - p')  + "T(T - T ' )  + . . . 
where  second  and  higher  order  terms  have  been  dropped. By definition, 

Equation (6) may  be  rewritten  in a matrix  notation as 



For brevity let 

Solving  equation (11) the  constraint   that   for A r ,  Ap, 
i 

and A T  yields  the  least-squares  solution 

The  solid  curve  in  figure 1 is a typical first estimate &' of I,, the  dashed 
curve. Now A h  is computed at approximately 100 points  from  figure 1. These  values, 
along  with  the  elements of A, are substituted  into  equation (12) and  values  for A r ,  
Ap, and A T  are computed  in a least-squares  sense.   These  results are substituted  into 
equations  (7), (8), (9), and (10) to  obtain new values  for r, p, and T which are used 
to  generate a new estimate  for  the I,' curve.   The  process is repeated  for  ei ther 
41  i terations  or  unti l   the  error is less than  The  error is defined as 

where AI,,i is computed at the  ith  point. 

DISCUSSION  AND RESULTS 

The  values  chosen  for  the  assumed  measured  light-intensity  curve are T = 240 K, 
r = -5 X krn-l,  and  p = 10 mb (1 mb = 100  N/m2). The  surface  temperature  was 
arbitrarily  chosen  between  that of an  illuminated  hemisphere (252 K) and a planet  average 
theoretical  temperature (213 K) calculated  for  solar  radiant  energy  equilibrium  (ref. 3). 
The  surface  pressure  was  chosen  to  be  between a low of 5 mb  measured by Mariner IV 
(ref. 2) and  the  value of 17 mb  calculated  from  spectroscopic  observation of the 
1.6 p m   C 0 2  bands  (ref. 4). The  value of I?, which is related to the  temperature  lapse 
rate -Tr ,  was  chosen  between  the  values of -3 X km-l   and -6.42 X krn-1 
obtained  from a least-squares fit to  the  temperature  curves of the  Martian  atmospheric 
engineering  models  used by the  Viking  Project  Office. 
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For  the initial conditions,  only  one of the  three  parameters  was  varied  while  the 
other two were started at the  desired  convergence  values.  The  question of varying  the 
three parameters  simultaneously  for  input is essentially  considered,  because  in  the sec- 
ond iteration all three   parameters  are displaced  from  the desired conditions.  Therefore, 
if the  second  iteration is considered as the first, all three   parameters  are varied 
simultaneously. 

Reference 1 pointed  out that the  shorter visible wavelengths (3500 d) produced  the 
most  readily  discernible  effects of the  light  intensity  variation.  Because of the  impor- 
tance of wavelength  and its effect on  the  results,  this  paper  considers  four  wavelengths: 
3500 A, 4700 A, 5500 A, and 6500 A. 

The  results are presented  in  tables  and  graphs.   The  tables list the  final  conver- 
gence  values of p, T, and I? along  with  their  relative  errors,  and  thus  provide a quick 
summary of the  results.  On  the  other hand, the  graphs of p', T', and I" plotted 
against  iteration  number  provide  insight  into  the rate of convergence  to  the  correct  values 
and  the  convergence  to  local  minimums. 

In  figures  2  to 6 the  initial  p'  values  range  from  2  to 25 mb  while  the  other  initial 
values are T' = 240 K and I?' = -5 x km-l .   The  parameters  are plotted  against 
iteration  number  for  the  four  wavelengths  under  consideration. 

Table I summarizes  the resu l t s  of figures  2  to 6 .  

Figures  2 and  3  illustrate  the rate of convergence  when  p is estimated  lower  than 
the  desired  value.  Figure  2 is for  an  initial  value of p' = 2  mb,  and  figure  3 is for   an 
initial value of p' = 6  mb. Figures  2(a),  2(b),  and  2(c)  converge  within  3  percent of the 
desired  values of p  and T after 40 iterations. (See table I.) The  desired  value of r 
is being  approached  in  figures  2(a),  2(b),  and  2(c);  however, its convergence rate is much 
slower  than  that of p  and T. The temperature  gradient  parameter I? is slowly  con- 
verging  in  figures 2(a) and 2(b) but after 40 i terations its value is too  great, by 20 percent 
and 25 percent,  respectively. (See table I.) In  figure 2(c), for  X = 5500 A, the  value 
of I? after 40 i terations is within 1 percent.  (See  table I.) The  same  statements as 
were  made  about  figures 2(a),  2(b), and  2(c)  may  be  made  about  figures  3(a), 3(b), and 3(c), 
with 3(c) showing  the  best  convergence  after 40 iterations  from  the  point of view of atmo- 
spheric  physics.   Figures 2(d) and 3(d), fo r  X = 6500 A, do  not converge  to  physically 
acceptable  values of I? and T. 

Figures  4, 5, and  6 are plots of the  convergence rate for  initial p'  values of 
14  mb, 18 mb,  and 25  mb, respectively.  Except  in  figure 6(d), all the  values are con- 
verging  for initial est imates  of p'  which are too  high;  however,  the case for  
X = 4700 A converges  most  slowly, as can  be  seen  in  figures 4(b)  and  5(b).  In  figure 6(d) 
the three parameters  are far from  correct  values after 40 i terations.   For  the  three 
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cases studied  with  p'  initially  estimated  too high, the  wavelengths that converge best 
are 5500 A and 3500 A. (See table I.) These  results,  together  with  the  results  for  the 
cases in  which p' was  estimated  too low, indicate  that 5500 A is the  most  acceptable 
wavelength  for  determining  an  accurate  p by using a linear  estimation  technique. 

In figures 7 to  10  the initial T' values range f rom 160 to  320 K while the  other 
initial values are p' = 10 mb  and I" = -5 X 10-3  km-1.  The  parameters are plotted 
against  iteration  number  for  the  four  wavelengths  under  consideration. 

Table 11 summarizes  the  results of f igures 7 to 10. 

A s  was  t rue of the first set of figures, I? is the  parameter  which is the  most d i f -  
ficult  to  converge.  Figures 7 and 8 are convergence  plots  for  the cases of T' esti- 
mated  lower  than T; here  T' = 160 K and 200 K, respectively.  For a T' of 160 K the 
best  convergence  for I? is at a wavelength of 5500 A. At the  end of 40 iterations,  fig- 
ure  7(c) has I? converged  within 11 percent,  p  within 4 percent,  and T within 8 pe r -  
cent. For  these  percentages  and  the  final  values of p, T, and I?, see table 11. For  
T' = 160 K, the  p  and  T  values after 40 i terations are better at 3500 b than at 5500 b, 
but r converges only  within 32 percent at 3500 A. (See table 11.) In  figure 8, fo r  
T' = 200 K, there  is convergence  within  2  percent of the  desired  value  for all three 
parameters  at both 5500 A and 6500 d. 

Figures 9  and  10 are convergence  plots  for T' estimated  higher  than T; here  
T' is 280 K and 320 K, respectively.  For a T' of 280 K there  is convergence  for all 
four  wavelengths,  with  the best convergence  for all three  parameters   occurr ing at 5500 
as shown  in  figure 9(c). Figures  lO(a), lO(b), and lO(c) show  convergence  for all param-  
eters to within 10 percent of the  desired  value,  but  in  figure 1O(d) the  parameters fail to  
converge.  (See  table 11.) However, a wavelength of 5500 A, shown in  figure lO(c), again 
produces  the  quickest  convergence  for a given  iteration.  For a surface  temperature  that  
can be estimated  within  33  percent (see table II), a wavelength of 5500 A appears  to  be 
most suitable fo r  obtaining  convergence of p, T, and I?. 

In  figures 11 to  15  the  initial r' values  range  from -50 X km-l   to  
5 X km-l  while  the  other initial values are p' = 10 mb  and T' = 240 K. The 
parameters  are plotted  against  iteration  number  for  the  four  wavelengths  under 
consideration. 

Table 111 summarizes  the  results of f igures 11 to 15. 

Figure 11 presents  plots  for I?' = +5 X 10-3  km-1,  which is of the  desired  magni- 
tude  but  has  the  wrong  sign.  Only  the case with X = 5500 k (fig. ll(c))  converges 
within 3.5 percent  for all three  parameters.  (See table III.) Figure 12 presents  plots 
fo r  I?' = 0 as the  initial  value.  For  this case both X = 5500 A and X = 6500 A con- 
verge  within 2.6 percent   for  all three  parameters.  (See table III.) Figure  13 is for   an  
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initial r' of -8 X km-l .   For  this case all parameters  converge at all wavelengths 
except X = 3500 A, and  even at X = 3500 only r, with  an  error  of 11.2 percent, is 
not close  to  the  desired  value. (See table III.) Figure 14 is for  r' = -12 X 10-3  km-1 
as the initial value.  In  figure 14 only  the  parameters at X = 3500 A do  not  converge  to 
the  desired  values.  In  figure  15  the initial estimate of I?' is in  eyror  by an order  of 
magnitude, o r  r' = -50 X lom3 km-1.  The  only  wavelength  for  which  convergence is 
attained  for all the  parameters after 40 iterations is 5500 A. Thus,  for  an  estimate 
of within 900 percent a wavelength of 5500 A appears  to  be  most  suitable  for  conver- 
gence of p,  T,  and r. 

The  results of the  convergence  figures  indicate  that a wavelength of about 5500 A 
should  give  the  best  overall  convergence  for a wide  range of input  conditions,  when  the 
linear  estimation  technique is used. At this  wavelength  the  best  convergence is obtained 
for  p, the  next  best  for  T,  and  the  worst  for r. Thus,  this  technique is most  sensitive 
to p, T,  and r in  that  order.  This is an  interesting  fact  because  in  other  investiga- 
tions  these  parameters  have  been  best  observed  and  measured  in  the  inverse  order.  In a 
great  many  studies is taken,  to a first approximation, as being  zero;  that is, an  iso- 
thermal  atmosphere is assumed.  The  surface  temperature  can  be  estimated  fairly well 
by  assuming  thermal  equilibrium of the  planet  and  the  sun,  and it has  also  been  well  mea- 
sured  from  polarization  studies.  The  property  that has yielded  the  widest  range of 
measurements is the  surface  pressure,  which  varies  from a calculated  5  mb  (Mariner IV) 
to  a calculated 87 mb  (ref. 5). 

CONCLUDING REMARKS 

A first-order  differential  correction  technique  utilizing a least-squares  method of 
I data fitting  has  been  applied  to  the  sun  occultation  light  curves  to  recover  the  surface 

pressure,   surface  temperature,   and  temperature  lapse  rate  in  the  Martian  atmosphere.  
The  model of light  passage  in  the  atmosphere  included  the  effects of refraction,  limb 
darkening,  finite  sun  size,  and  Rayleigh  scattering.  The  results of this  investigation 
demonstrate  that  the  most  suitable  wavelength at which  to  obtain data for  quick  conver- 
gence,  even  when  the  initial  estimates are in   e r ro r  by 150 percent  for  surface  pres- 
su re  p,  33  percent  for  surface  temperature  T, or 900 percent  for  temperature  gradient 
parameter  r, is in  the 5500 region of the  visible  spectrum. At this  wavelength,  the 
order  of best  convergence  was  found  to be (1) p, (2) T,  and (3) r. 
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This  technique of utilizing  the  occultation of sunlight as seen by an  artificial satel- 
lite and  the  differential  correction  technique  to  recover  atmospheric  parameters  can be 
used as a n  independent  method  to  determine  the  Martian  atmospheric  parameters or to 
provide a check  on  any  other  data  source. 

Langley  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Hampton,  Va., March 29, 1971. 
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TABLE 1.- SUMMARY O F  RESULTS  FOR  VARIED  INITIAL  VALUES OF p' 

Initial  conditions  Final  conditions  Error,  percentage 

I ' 10 T' - 240 x 100 r' + (5 x 10-31 x 
I A p' ,   mb  T ' ,  K r', km-1 p, mb  T ,  K r, k m - l  X 100 

~~ Figure Wavetength, 

10 240 -5 X 10-3 
______ 

3 500 
4700 
5 500 
6500 

3500 
4700 
5 500 
6500 

3 500 
4700 
5500 
6 500 

3 500 
4700 
5 500 
6500 

3 500 
4700 
5500 
6 500 

2  240 '-5 X 10-3 9.97  240.4 

i 
Y 
I 
I 

14 

18 

25 

9.87 243.6 
9.99 246.8 

31.1 1634.6 

9.97 240.5 
9.90 241.8 
9.99 242.4 

31.1 1634.6 

10.0 240.1 
10.1 238.2 
10.1 236.0 
9.99 238.6 

10.0 240.0 
10.2 237.4 
10.2 231.5 
9.98 237.5 

10.0 240.1 
10.1 239.0 
10.2 1 227.2 10.9 159.2 

-5.98 X 10-3 
-6.27 X 10-3 
-5.05 X 10-3 
-4.55 X 10-15 

-5.83 X 10-3 
-5.67 X 10-3 
-5.07 X 10-3 
-4.55 X 10-15 

-4.87 X 10-3 
-4.07 X 10-3 
-4.94 X 10-3 
-5.10 X 10-3 

-4.44 X 10-3 
-3.61 X 10-3 
-4.81 X 10-3 
-5.16 X 10-3 

-4.75 X 10-3 
-4.48 X 10-3 
-4.66 X 10-3 

-14.2 X 10-3 9.0 

0.3 
1.3 
.1 

211.0 

.3 
1.0 
.1 

211.0 

0 
1.0 
1.0 
.1 

0 
2.0 
2.0 

.2 

0 
1.0 

0.2 
1.5 
2.9 

581.1 

.2 

.8 
1.0 

581.1 

.1 

.7 
1.7 
.6 

0 
1.1 
3.5 
1.1 

.1 

.4 
5.3 

33.7 

19.6 
25.4 

1.0 
100.0 
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Figure 14.- Continued. 
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Figure 14.- Continued. 
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Figure 15.- Convergence plots for p' = 10 mb, T' = 240 K, and r' = -50 X km-l .  
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